## MODEL ANSWER

## SUMMER- 19 EXAMINATION

## Subject Title: Linear Integrated Circuits

Subject Code: 22423

## Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in/the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Q. <br> No. | Sub <br> Q.N. | Answer | Marking <br> Scheme |
| :--- | :--- | :--- | :--- |
| Q.1 |  | Attempt any Five : | 10-Total <br> Marks |
|  | a) | State ideal value of given parameters for Op-Amp IC 741: <br> (i) Slew rate <br> (ii) SVRR | $\mathbf{2 M}$ |

(ISO/IEC - 27001-2005 Certified)

(ISO/IEC - 27001-2005 Certified)

|  | Ans: | (i) Roll off Rate: <br> The rate at which gain falls off rapidly in stop band is called Roll off rate <br> (ii) Pass band: <br> A pass band is the range of frequencies that can pass through a filter. | 1M each |
| :---: | :---: | :---: | :---: |
|  | e) | State the function of IC 555. | 2M |
|  | Ans: | The 555 timer IC is an integrated circuit (chip) used in a variety of timer, pulse generation, and oscillator applications. The 555 can be used to provide time delays, as an oscillator, and as a flip-flop element. | Any 2 <br> 1M each |
|  | f) | Give classification of filter based on components used. | 2M |
|  | Ans: | Classification of filter based on components used are: <br> 1. Active filters(components such as transistor, OP-AMP) <br> 2. Passive filters(components such as R,L,C) | $\begin{gathered} 1 \mathrm{M} \\ \text { each } \end{gathered}$ |
|  | g) | Define order of filter with suitable example. | 2M |
|  | Ans: | Order of the filter:- <br> It depends on the rate at which filter's/gain decreases or increases after or before cut off frequency. <br> For example: <br> 1. If gain of the filter is reduced by -20 dB / decade or increases by +20 dB / decade then the filter is of $1^{\text {st }}$ order. <br> 2. If gain of the filter is reduced by $-40 \mathrm{~dB} /$ decade or increases by $+40 \mathrm{db} /$ decade then the filter is of $2^{\text {nd }}$ order and so on. | $\mathbf{1 M}$ $\mathbf{1 M}$ |
| Q 2 |  | Attempt any Three : | 12M |
|  | a) | Draw pin diagram of IC 741 and state the function of each pin. | 4M |
|  | Ans: |  |  |

(ISO/IEC - 27001-2005 Certified)

(ISO/IEC - 27001-2005 Certified)


(ISO/IEC - 27001-2005 Certified)

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Q. 3 |  | Attempt any three: | 16M |
|  | a) Ans: | Explain virtual ground concept of an op-amp. <br> Virtual ground is a concept related to the negative feedback in an op amp. <br> Explanation of Virtual ground concept:- <br> In circuit point $\mathrm{V}_{\mathrm{A}}$ is virtual ground. Figure shows inverting amplifier using op-amp. <br> In this circuit non-inverting terminal is connected to the actual ground. Due to this potential of inverting terminal become zero. Thus, inverting terminal is not actually connected to the ground. There after its potential is zero. Thus point $\mathrm{V}_{\mathrm{A}}$ is known as virtual ground point. This phenomenon of having zero potential without actually grounding is known as virtual ground concept. | 4M <br> 2 M <br> 2M |
|  | b) | Draw the circuit diagram of logarithmic amplifier using diodes and obtain the expression for its output voltage. | 4M |

(ISO/IEC - 27001-2005 Certified)


|  |  | $\frac{I_{F}}{I_{O}}=\left(e^{\frac{V_{F}}{V_{T} \eta}}\right)$ <br> Taking natural $\log$ on both side, $\begin{gathered} \log _{e}\left(e^{\frac{V_{F}}{V_{T} \eta}}\right)=\log _{e}\left(\frac{I_{F}}{I_{O}}\right) \\ \frac{V_{F}}{\eta V_{T}} \log _{e} e=\log _{e}\left(\frac{I_{F}}{I_{O}}\right) \end{gathered}$ <br> As $\log _{e} e=1$ $\therefore \frac{V_{F}}{\eta V_{T}}=\log _{e}\left(\frac{I_{F}}{I_{Q}}\right)$ $\begin{equation*} V_{F}=\eta V_{T} \log _{e}\left(\frac{I_{F}}{I_{O}}\right) . \tag{1} \end{equation*}$ <br> Now from figure, $V_{F}=-V_{O}\left(\text { Since } V_{B}=0 \text { fromvirtualgroundconcept }\right)$ <br> Now apply KCL at node B, $\begin{gathered} I_{1}=I_{B}+I_{F} \\ \therefore I_{1}=I_{F} \end{gathered}$ $\therefore \frac{V_{i}-V_{B}}{R_{i}}=I_{F}$ <br> $\therefore I_{F}=\frac{V_{i}}{R_{i}}$ (Since $V_{B}=0$ fromvirtualgroundconcept) <br> Put this into eqn 2 $V_{O}=-\eta V_{T} \log _{e}\left(\frac{V_{i}}{R_{i} I_{O}}\right)$ |  |
| :---: | :---: | :---: | :---: |
| Page9 |  | OUR CENTERS : <br> KALYAN \| DOMBIVLI |:TIUZAXNEg ${ }_{e} \mathbb{M}_{i} E R U L$ \| DADAR Contact - 9136008228 |  |


(ISO/IEC - 27001-2005 Certified)



(ISO/IEC - 27001-2005 Certified)

| Ans: | Circuit Diagram : <br> Derivation: <br> Apply KCL at node $\mathbf{V}_{\mathbf{1}}$ $\begin{aligned} & I_{1}+I_{2}=I_{L}+I_{B} \\ & I_{1}+I_{2}=I_{L} \ldots \ldots \ldots \ldots \ldots \ldots \ldots\left(I_{B}=0\right) \\ & \frac{V_{\text {in }}-V_{1}}{R}+\frac{V_{O}-V_{1}}{R}=I_{L} \\ & V_{\text {in }}+V_{O}-2 V_{1}=I_{L} R \\ & V_{1}=\frac{V_{\text {in }}+V_{O}-I_{L} R}{2} \end{aligned}$ <br> As non-inverting mode is used, $\begin{aligned} & \mathrm{A}=1+\frac{R}{R}=2 \\ & \therefore V_{O}=2 V_{1} \\ & V_{O}=V_{\text {in }}+V_{O}-I_{L} R \\ & V_{\text {in }}=I_{L} R \\ & I_{L}=\frac{V_{i n}}{R} \end{aligned}$ | $\mathbf{2 M}$ $2 \mathrm{M}$ |
| :---: | :---: | :---: |
| e) | Describe the working of bistable multivibrator with circuit diagram and waveform using IC555. | 4M |
| Ans: | Circuit Diagram: | 2M |

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
Waveforms: \\
Working: \\
1. \\
When negative going pulse is applied at pin no.2, it is more negative than \(1 / 3\) Vcc of lower comparator, \\
\(\therefore\) Output of lower comparator is high. \\
\(\therefore S=1\) \\
\(\therefore\) output of flip flop \(\mathrm{Q}=1\) \\
\(\therefore\) Final output \(=1\) \\
2. \\
When positive going pulse is applied at pin no.6, it is more positive than \(2 / 3 \mathrm{Vcc}\) of upper comparator, \(\therefore\) Output of upper comparator is high. \\
\(\therefore \mathrm{R}=1\) \\
\(\therefore\) output of flip flop \(\mathrm{Q}=0\) \\
\(\therefore\) Final output \(=0\)
\end{tabular} \& 1 M

$1 M$ <br>
\hline Q. 5 \& Solve any TWO : \& 12 M <br>
\hline
\end{tabular}

(ISO/IEC - 27001-2005 Certified)


(ISO/IEC - 27001-2005 Certified)


\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\(A v=A v 1 \times \operatorname{Av} 2\) Therefore,
\[
\mathrm{Av}=\left[1+\frac{2 R 1}{R 2}\right] \times \frac{R 4}{R 3}
\] \\
5. Hence by using a variable resistor \(\mathrm{R}_{2}\) the overall gain can be easily and linearly varied. \\
6. The output is then given by \(\mathrm{Vo}=\mathrm{Av}^{*}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)\)
\end{tabular} \& \\
\hline Q. 6 \& Attempt any TWO: \& 12M \\
\hline a) \& Draw the designed circuit for getting output voltage \(V_{o}=\left(V_{a}+V_{b}+V_{c}\right) / 3\) and suggest modifications for converting into scaling amplifier. \& 6M \\
\hline Ans: \& \begin{tabular}{l}
Diagram:- \\
Explanation:- \\
The output voltage is equal to the average of all the input voltages times the gain of the circuit \((1+R f / R 1)\) hence the averaging amplifier. If gain \((1+R f / R 1)=1\) then the output voltage will be equal to average of all the input voltages.
\[
V o=\frac{V a+V b+V c}{3}
\] \\
Modification to convert averaging amplifier into the Scaling amplifier:- \\
This can be accomplished by selecting the value of three input resistors of different value thus the output voltage of scaling amplifier is
\[
\mathbf{V o}=\left(\mathbf{R}_{\mathrm{f}} / \mathbf{R}_{\mathrm{a}} * \mathbf{V}_{\mathrm{a}}+\mathbf{R}_{\mathrm{f}} / \mathbf{R}_{\mathrm{b}} * \mathbf{V}_{\mathrm{b}}+\mathbf{R}_{\mathrm{f}} / \mathbf{R}_{\mathrm{c}} * \mathbf{V}_{\mathrm{c}}\right)
\] \\
Where
\end{tabular} \& 2 M

2 M

2M <br>
\hline
\end{tabular}

 ENGINEERING
(ISO/IEC - 27001-2005 Certified)

(ISO/IEC - 27001-2005 Certified)

(ISO/IEC - 27001-2005 Certified)

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |



